Preparation of 2 and 9. Gaseous formaldehyde, prepared from paraformaldehyde (0.571 g, 19 mmol) by heating a flask containing the solid with a flame, was bubbled into a solution of hydroxylamine 8 (0.295 g, 1.9 mmol) in 50 mL of toluene containing 18 g of anhydrous sodium sulfate under nitrogen.^{5a} The mixture was stirred for 15 min at 0 °C and then heated at reflux for 24 h. The mixture was cooled, filtered through Celite, and evaporated to give 0.327 g of an orange oil. Chromatography on silica gel (ether) gave 0.234 g (74%, 70% based on 7) of a 2.5:1 mixture of 2 and 9 as determined by GC analysis. Pure samples of 2 and 9 were isolated by preparative GC on a 10 ft × 1/4 in. 4% KOH, 15% Carbowax 20 M on 60/80 Chromosorb W column at 200 °C at a flow rate of 50 mL/min.

The data for 2 follow: NMR (\dot{CDCl}_3) δ 3.93 (dd, 1, J = 6, 9 Hz), 3.38 (d, 1, J = 11 Hz), 3.27 (dd, 1, J = 12.5, 4.5 Hz), 2.63 (ddd, 1, J = 12.5, 12, 5 Hz), 2.57 (d, 1, J = 11 Hz), 1.17–2.17 (m, 12); IR (neat) 2940, 2865, 1460, 980, 920, 905, 900, 875, 765 cm⁻¹; MS, m/e (relative intensity) 167 (M⁺, 39) 150 (70), 96 (28), 93 (36), 81 (40), 79 (53), 67 (33), 60 (31), 55 (31), 43 (30), 42 (28), 41 (35), 40 (100); GC (200 °C) t_R 13.8 min. Anal. Calcd for $C_{10}H_{17}NO$: C, 71.81; H, 10.25; N, 8.37. Found: C, 71.28, H, 10.18; N, 8.21. The data for 9 follow: NMR ($CDCl_3$, 500 MHz) δ 3.29 (ddd,

The data for 9 follow: NMR (CDCl₃, 500 MHz) δ 3.29 (ddd, 1, J = 5, 8, 13.5 Hz), 3.27 (d, 1, J = 11.5 Hz), 2.94 (dd, 1, J = 11.5, 4 Hz), 2.75 (dd, 1, J = 13.5, 5.5 Hz), 2.39–2.25 (m, 1), 1.77–1.00 (m, 12); IR (neat) 2940, 2870, 1455, 1020, 955, 870, 830, 780, 620 cm⁻¹; MS, m/e (relative intensity) 167 (M⁺, 43), 150 (100), 93 (41), 91 (42), 81 (47), 79 (58), 67 (38), 55 (62), 43 (42), 42 (58), 41 (95), 39 (48); GC (200 °C) t_R 11.1 min. Anal. Calcd for C₁₀H₁₇NO: C, 71.81; H, 10.25; N, 8.37. Found: C, 71.65; H, 10.15; N, 8.17.

(±)-Nitramine (1a). 10% Pd on carbon (0.017 g) was added to a solution of 2 (0.042 g, 0.25 mmol) in 6 mL of ethanol. The resulting mixture was stirred under 1 atm of hydrogen for 2 h, filtered through Celite, and evaporated to give 0.041 g (96%) of (±)-nitramine (1a): NMR (CDCl₃) δ 5.33 (br s, 2), 3.53 (dd, 1, J = 9, 4 Hz), 3.37 (d, 1, J = 12 Hz), 3.17–2.83 (m, 1), 2.65 (ddd, 1, J = 11.5, 11.5, 3 Hz), 2.43 (d, 1, J = 12 Hz), 2.2–0.8 (m, 12); ¹³C NMR (C₆D₆) δ 78.5 (C-7), 52.7 (C-1), 47.3 (C-3), 39.0, 37.5, 36.3, 33.2, 24.7, 24.2, 21.5; IR (CCl₄) 3300, 2940, 2870, 2820, 1455, 1440, 1125, 1080, 1050 cm⁻¹. The ¹H and ¹³C NMR data correspond closely to those reported for the natural product.^{2a}

An acetone solution of nitramine was mixed with an ethanolic solution of hydrogen chloride. The solvent was evaporated to give a yellowish solid, mp 180–185 °C, which was recrystallized twice from acetone to give pure (\pm)-nitramine hydrochloride, mp 225–228 °C.

(±)-N-Methylnitramine (1b). A solution of 1a (40 mg, 0.28 mmol) in 0.5 mL of EtOH and 0.5 mL of methyl iodide was heated

for 2 h at 90 °C in a sealed tube. The solvent and excess methyl iodide were evaporated. The residue was treated with ice water, and the solution was made alkaline with 5% sodium hydroxide solution and extracted with three portions of ether. The combined organic layers were dried (Na₂SO₄) and evaporated to give 0.029 g (68%) of pure (±)-1b: NMR (CDCl₃) δ 4.77 (br s, 1), 3.53 (dd, 1, J = 9, 4 Hz), 3.17 (d, 1, J = 12 Hz), 3.00–2.63 (m, 1), 2.27 (s, 3), 2.2–1.1 (m, 14); ¹³C NMR (CDCl₃) δ 78.0 (C-7), 61.4 (C-1), 56.1 (C-3), 46.4 (N-Me), 37.4 (2 carbons), 36.9, 32.7, 24.3, 23.4, 21.1; IR (CDCl₃) 3230, 2940, 2860, 2800, 1455, 1265, 1160, 1065, 1020 cm⁻¹. The ¹H NMR and IR data correspond closely to those previously reported.^{2a}

trans - and cis-Hexahydro-1-indanone (13 and 14). MeAlClo (1 mL of 1.4 M in hexane, 1.4 mmol) was added to a solution of aldehyde 4 (0.234 g, 1.69 mmol) in 20 mL of CH₂Cl₂ at 0 °C under nitrogen. The solution was stirred for 5 min at 0 °C and 1.5 h at 20 °C. The reaction mixture was poured into water and treated with 10% HCl to dissolve the precipitate. The mixture was extracted with three portions of CH₂Cl₂, which were combined, dried (MgSO₄), and evaporated to give 0.181 g of a brown oil. Chromatography on silica gel (9:1 hexane-ether) gave 0.121 g (52%) of a \approx 3.5:1 mixture of 13 and 14 as determined by GC analysis and ¹³C NMR spectroscopy: NMR (CDCl₃) δ 0.7–2.5 (m, 14); ¹³C NMR (CDCl₃) δ 13 217.9, 55.4, 43.2, 36.9, 32.5, 27.6, 25.8, 25.5, 24.9; 14 49.3, 34.7, 28.1, 23.9, 22.8, 22.4, three carbons were not observed; IR (neat) 2930, 2850, 1740, 1450, 1085 cm⁻¹; GC (9 ft; 1/4 in.; 10% Carbowax 20 M on Chromosorb PNAW 60/80, 50 mL/min, 150 °C) t_R 20.9 (13) and 21.9 (14) min, partially overlapping. The ¹³C NMR data are identical with those previously reported.¹⁷

An identical reaction was carried out at -20 °C and monitored by GC. Ketones 13 and 14 were formed as a $\approx 12:1$ mixture. The reaction was worked up after 8 h, at which time it was 90% complete.

Acknowledgment. We are grateful to the National Institues of Health for financial support. The 500-MHz spectrometer was purchased with funds provided by NIH Grant GM 20168. C.P.C-M. gratefully acknowledges a fellowship support from CONICIT (Venezuela).

Registry No. (±)-1a, 82227-98-3; (±)-1a·HCl, 89398-21-0; (±)-1b, 89460-82-2; (±)-2, 89398-19-6; 4, 60416-25-3; (±)-5, 89398-16-3; (±)-6, 89414-11-9; (*E*)-7, 89398-17-4; (*Z*)-7, 89398-24-3; 8, 89398-18-5; (±)-9, 89398-20-9; (±)-13, 89398-22-1; (±)-14, 89398-23-2; methylenecyclohexane, 1192-37-6; methyl α -chloroacrylate, 80-63-7.

Asymmetric Diels-Alder Reactions with Sulfines Derived from Proline

Leon A. G. M. van den Broek,[†] Pascal A. T. W. Porskamp,[†] R. Curtis Haltiwanger,^{†1} and Binne Zwanenburg^{*†}

Department of Organic Chemistry and Crystallographic Laboratory, Univerity of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands

Received September 13, 1983

The synthesis of a variety of sulfines 8 derived from S-proline, utilizing the reaction of α -silyl carbanions with sulfur dioxide, is described. Reaction of the thus prepared sulfines 8 with 2,3-dimethyl-1,3-butadiene gave dihydrothiopyran S-oxides 9. During these cycloaddition reactions asymmetric inductions up to 40% were observed. From one pure diastereometric form of cycloadduct 9d an X-ray analysis was carried out in order to provide insight in the steric course of the cycloaddition reaction.

Sulfines (thione S-oxides) are sulfur-centered heterocumulenes that can undergo a variety of cycloaddition reactions,² e.g., with carbon 1,3-dienes, heterodienes, diazo compounds, nitrile oxides, and nitrilimines. The Diels-Alder type reactions with 1,3-butadienes lead to dihydro-

thiopyran S-oxides (Scheme I). An interesting feature of this cycloaddition is that geometrically isomeric sulfines

[†]Department of Organic Chemistry.

[‡]Crystallographic Laboratory.

produce cycloadducts in which the stereochemical relationship present in the sulfine is predominantly retained.^{2,4} The dienophilicity of sulfines is strongly dependent on the substituents. As expected, sterically filled substituents have a retarding effect, while electron-withdrawing functions enhance the reactivity.² During the cycloaddition reaction with sulfines having unequal substituents ($R_1 \neq$ R_2) two chiral centers are formed, in other words the sulfine carbon and sulfur atoms both are prochiral centers.

The aim of this investigation is to study the extent of asymmetric induction of the Diels-Alder reaction with sulfines bearing a chiral substituent. In the literature asymmetric Diels-Alder reactions have been reported with chiral olefinic dienophiles,⁴ chiral dienes,⁵ and chiral Lewis acid catalysts.⁶ In a recent paper we described our results with 10-chloro-10-sulfinvlcamphor and sulfoximino substituted sulfines as chiral sulfines.⁷ In these cases complete asymmetric inductions were observed.

Naturally occurring amino acids are frequently used as chiral inductor in asymmetric synthesis.⁸ Therefore, it is of interest to design a sulfine having a substituent derived from an amino acid. For this purpose we chose S-proline as it is relatively cheap, it can readily be modified, and it has an excellent reputation in asymmetric synthesis.^{8,9}

For the purpose of incorporating proline or a congener in a sulfine molecule the following aspects need to be taken into account. The modified Peterson reaction, i.e., al-

Figure 1.

kylidenation of sulfur dioxide using α -silvl carbanions.¹⁰ offers the best prospects for the synthesis of the desired sulfines. Therefore, a suitable active methylene function is required in the precursor for the sulfine. Furthermore, in order to ensure sufficient dienophilicity of the sulfine, it must bear an appropriate electron-withdrawing substituent. To serve this purpose a sulfonyl group was chosen as activating substituent for the methylene group as well as connecting function with the proline derivative. In essence, the sulfine precursors are then sulfonyl pyrrolidines which are readily accessible from appropriately modified proline and a variety of sulfonvl chlorides (Scheme II). Proline was converted into (alkoxymethyl)pyrrolidines 5 by the sequence of reactions outlined in Scheme II. The ether function was introduced in the N-protected prolinol¹¹ (reaction of 3 with sodium hydride and methyl iodide, benzyl bromide, and 2,4,6-trimethylbenzyl chloride, respectively; in the case of the trityl ether pyridine was used as the base). Sulfonylation of 5 was carried out with chloromethanesulfonyl chloride,^{12,13} phenylmethanesulfonyl chloride, and ethanesulfonyl chloride in the presence of triethylamine (solvent tetrahydrofuran).

Silvlation of the active methylene compounds 6 was performed by deprotonation with *n*-butyllithium and subsequent treatment with trimethylsilvl chloride. The required α -silvl carbanions were obtained by deprotonation of 7 with n-butyllithium. The carbanions were then added to an excess of sulfur dioxide dissolved in tetrahydrofuran at -78 °C. In this manner the sulfines 8a-c,i-m were obtained in solution. These sulfines are all very sensitive toward hydrolysis.¹⁴ Upon contact with water they easily hydrolyze to the corresponding methylene compounds 6. The sulfines 8d-f enjoy a much greater stability, they could be isolated by the usual aqueous workup and subsequent chromatography. However, during the purification considerable loss of material had to be accepted.

From the ¹H NMR spectra of the sulfines 8d-f it was concluded that these compounds have the E geometry; the ortho protons of the phenyl ring in these sulfines absorb at lower field than the remaining aromatic protons. This is due to the anisotropic deshielding effect of the S=O moiety which is directed toward the phenyl substituent.² By extrapolation it is assumed that the other sulfines 8a-c and 8i-m also possess the E geometry.¹⁵

⁽¹⁾ On leave from the University of Colorado, Department of Chemistry, Boulder, Colorado 80309.

 ⁽²⁾ Zwanenburg, B. Recl. Trav. Chim. Pays-Bas 1982, 101, 1.
 (3) Zwanenburg, B.; Thijs, L.; Broens, J. B.; Strating, J. Recl. Trav. Chim. Pays-Bas 1972, 91, 443.

Chim. Pays-Bas 1372, 91, 445.
 (4) Walborsky, H. M.; Barash, L.; Davis, T. C. Tetrahedron 1963, 19, 2333. Corey, E. J.; Ensley, H. E. J. Am. Chem. Soc. 1975, 97, 6908.
 Boeckman, Jr., R. K.; Naegely, P. C.; Arthur, S. D. J. Org. Chem. 1980, 45, 752. Helmchen, G.; Schmierer, R. Angew. Chem. 1981, 93, 208. Angew. Chem., Int. Ed. Engl. 1981, 20, 205. Oppolzer, W.; Kurth, M.; Reichlin, D.; Moffatt, F. Tetrahedron Lett. 1981, 22, 2545. Oppolzer, W.; Kurth, M.; Reichlin, D.; Chapuis, C.; Mohnhaupt, M.; Moffatt, F. Helv. Chim. Acta 1981, 64, 2802. Oppolzer, W.; Chapuis, C.; Mao Dao, G.; Reichlin, D.; Godel, T. Tetrahedron Lett. 1982, 23, 4781.

⁽⁵⁾ Trost, B. M.; Godleski, S. A.; Genêt, J. P. J. Am. Chem. Soc. 1978, 100, 3930. Trost, B. M.; O'Krongly, D.; Belletire, J. L. Ibid. 102, 7595. David, S.; Eustache, J.; Lubineau, A. J. Chem. Soc. Perkin Trans. 1 1979, 1795. Mukaiyama, T.; Iwasawa, N. Chem. Lett. 1981, 29.

⁽⁶⁾ Hashimoto, S.; Komeshima, N.; Koga, K. J. Chem. Soc., Chem. Commun. 1979, 437.

⁽⁷⁾ Porskamp, P. A. T. W.; Haltiwanger, R. C.; Zwanenburg, B. Tetrahedron Lett. 1983, 24, 2035.

⁽⁸⁾ Drauz, K.; Kleemann, A.; Martens, J. Angew. Chem. 1982, 94, 590. (9) Enders, D.; Eichenauer, H. Chem. Ber. 1979, 112, 2933.

⁽¹⁰⁾ Van der Ley, M.; Porskamp, P. A. T. W.; Lammerink, B. H. M.; Zwanenburg, B. Tetrahedron Lett. 1978, 811.

⁽¹¹⁾ Seebach, D.; et al. Helv. Chim. Acta 1977, 60, 301.

⁽¹²⁾ The chloromethanesulfonyl chloride was synthesized by reaction of trithioformaldehyde with chlorine and water.¹³ For high yields of chloromethanesulfonyl chloride it was essential to start with recrystallized trithioformaldehyde.

⁽¹³⁾ Brintzinger, H.; et al. Chem. Ber. 1952, 85, 455.

^{(14) (}a) Veenstra, G. E.; Zwanenburg, B. Recl. Trav. Chim. Pays-Bas
1976, 95, 28. (b) Porskamp, P. A. T. W.; Van der Leij, M.; Lammerink,
B. H. M.; Zwanenburg, B. Recl. Trav. Chim. Pays-Bas
1983, 102, 400.

⁽¹⁵⁾ The ratio of geometrical isomers during this synthesis of sulfines

by the modified Peterson reaction is determined by the relative bulkiness of the substituents at the sulfine carbon atom. In the case of sulfonyl substituted sulfines we invariably obtained E sulfines.^{14b}

Table I. Thiopyran S-Oxides 9 by Cycloaddition of 2,3-Dimethyl-1,3-butadiene and Sulfines Derived from Proline

	\mathbf{R}_{i}	R ₂	silyl compd	yield, %	de, %	cycloadduct $T, ^{\circ}\mathrm{C}$	yield, %ª	de, % determined by	
starting materials								¹ H NMR	HPLC
6a	CH ₃	Cl	7a	83.3	28	9a 78	57.5	21.4	22.2
6b	CH_2Ph	Cl	7b	81.3	36	9b 78	44.5	35.6	38.4
6c	CH ₂ Mes	Cl	7c	90.7	34	9c 78	44.1	38.0	40.8
6d	CH ₃	Ph	7d	89.3	16	9d 25	90.0 ^b	15.6	15.4
6e	CH ₂ Ph	Ph	7e	89.0	10	9e 25	95.1 ^b	10.5	
6f	CH, Mes	Ph	7f	78.1	10	9f 25	70.0^{b}	19.5	21.8
6 i	CPh ₃	Ph	7i	55.0	0	9i 25	24.6	0	
6 j	CH,	CH_3	7j	74.8	0	9 j 78	45.0	5.4	
6k	CH,Ph	CH_{3}	7k	77.6	0	9k 78	41.5	3.4	2.4
61	CH,	CH,Ph	71	68.9	40	91 78	45.8	34.0	
6m	CH ₂ Ph	$CH_{2}Ph$	7m	86.0	60	9m 78	23.6	36.4	

^a Determined starting from 7 based on silvl compound 7 (without isolation of sulfine 8). ^b Based on isolated sulfine 8.

All the sulfines 8, either prepared in situ or isolated, were subjected to a Diels-Alder reaction with 2,3-dimethyl-1,3-butadiene giving the expected cycloadducts 9. In the cases of in situ prepared sulfines (8a-c,i-m) the adduct was accompanied by some 3,4-dimethylsulfolene¹⁶ arising from dimethylbutadiene and the excess of sulfur dioxide. This byproduct sometimes hampered the isolation of the cycloadducts 9.

The thiopyran S-oxides 9 were all obtained as mixtures of diastereomers. The differences in physical properties of the diastereomers are apparently small as separation by chromatography could not be accomplished. In one case, viz. 9d, one of the diasteromers was separated by fractional crystallization (vide infra).

The ratio of diastereomers¹⁷ was determined by analytical HPLC using an ultraviolet detector. To avoid any errors due to differences in extinction coefficients of the stereoisomers, the analyses were performed at several wavelengths. No deviations in diastereomeric ratios were found, however. The ratio of diastereomers was also determined by means of ¹H NMR analysis using (optically active)¹⁸ shift reagents. Within the limits of accuracy the diastereomeric excess values are the same as those found with the HPLC method. The data are compiled in Table I. The cycloaddition of 9b was carried out at two different temperatures, viz. 25 and -78 °C. The lower temperature experiment gave a higher asymmetric induction (36% at -78 °C vs. 25% at 25 °C). As mentioned above one of the diastereometric cycloadducts 9d, namely the predominant one, could be separated by careful crystallization. In order to gain insight in the steric course of the cycloaddition reaction the structure of this crystalline single diastereomer of 9d was determined by X-ray analysis¹⁹ (Figure 1). As expected^{2,3} this analysis shows that the stereochemical relationship (E geometry) present in the sulfine is retained in the cycloadduct. From the absolute configurations of the sulfoxide (S) and of $C_2(R)$ it can readily be reconstructed that the predominant diastereomeric cycloadduct **9d** originates from an approach of the diene to the $C_{si}S_{si}$ face of the sulfine.

Figure 2.

When it is assumed that the electrostatic interaction of the sulfone oxygen atoms and the sulfine moiety will be minimized when these functions are placed in an anti position, only rotamers about the sulfonamide bond need to be considered for the preferred approach of the diene. In a sterically controlled approach of the diene the $C_{si}S_{si}$ face (which is leading to the preferred diastereomer) must be the least hindered one, in other words, the alkoxymethyl function at the pyrrolidine ring will be opposite to the preferred $C_{si}S_{si}$ face as pictured in Figure 2. (Note that the sulfine function is the plane of the paper; $C_{si}S_{si}$ attack then refers to an approach perpendicular to this plane). Thus, through steric shielding of the $C_{re}S_{re}$ face of the sulfine by the alkoxymethyl group the asymmetric induction during this cycloaddition can be understood.

When the diastereomeric excess (de) values obtained for the three chlorosulfines 8a-c were compared the conclusion is justified that the nature of the alkoxy substituent in the pyrrolidine moiety has only a moderate effect on the extent of the asymetric induction. The same conclusion can be drawn by comparing the induction data of the phenylsulfines 8d-f and the benzylsulfines 81,m, respectively. Although shielding of one diastereotopic face of the sulfine through π -stacking of the benzyloxy or trimethylbenzyloxy is quite conceivable this effect clearly plays no significant role in the present case. The steric size of the trityloxy group (9i) has an unexpected influence on the induction; instead of improving the de value the induction is virtually zero.

On the basis of the above observations it is suggested that the alkoxy group turns away from the sulfine moiety, probably to escape from unfavorable interactions with the sulfine oxygen atoms. Molecular models clearly indicate that the alkoxy group can take a spatial position which causes no shielding of the sulfine at all. The methylene group at the pyrrolidine ring is then solely responsible for the steric differentiation of the diastereotopic faces of the sulfine function.

The results presented here also suggest that better asymmetric induction may be expected when the inducing

⁽¹⁶⁾ Mock, W. L. J. Am. Chem. Soc. 1975, 97, 3673.

⁽¹⁷⁾ The product mixture consists of two diastereomeric adducts only, both derived from the *E* sulfine. The alternative that these two products arise from isomerized sulfine with complete asymmetric induction during the subsequent cycloaddition for each geometrical isomer seems highly unlikely.

⁽¹⁸⁾ Although the ratio of diastereomers can be determined by nonoptically active shift reagents, in this case optically active shift reagents gave better results.

⁽¹⁹⁾ The details of this analysis are published elsewhere: Haltiwanger, R. C.; Beurskens, P. T.; Porskamp, P. A. T. W.; van den Broek, L. A. G. M.; Zwanenburg, B. J. Crystallogr. Spectrosc. Res., submitted for publication.

chiral center is in closer proximity of the sulfine group. It should be noted that the Diels-Alder reacitons in this

study were carried out without a Lewis acid catalyst.²⁰

It is of interest to compare the asymmetric induction during the Diels-Alder reaction with that during the silylation of the sulfonamides 6. The diastereomeric ratios of the silyl compounds 7 were determined by means of ¹H NMR; the de values are listed in Table I. The asymmetric induction data obtained for the silylation and the cycloaddition show a remarkable parallel. In fact, when the silylation proceeds with an appreciable induction the same is found for the cycloaddition despite the fact that we are dealing with entirely different diastereoselection processes.

Experimental Section

Melting points were determined on a Koffler hotstage and are uncorrected. ¹H NMR spectra were recorded at 90 MHz using a Varian EM 390 instrument with Me₄Si as internal standard. IR spectra were taken on a Perkin Elmer 257 Grating Spectrometer. The combustion analyses were performed in the Microanalytical Department of our laboratory by J. Diersmann. Mass spectra were recorded on a Varian SM1B mass spectrometer or a Finnigan 3100 GC/MS. The n-BuLi used was a stock solution in hexane. THF was distilled twice from CaH_2 before use. All reactions in which carbanions are used are carried out under nitrogen. The HPLC analyses were performed using a "SP-8700 solvent delivery system" instrument equiped with a "SP-8400 variable wavelength" detector. The following columns were used: A Chrompack LiChrosorb Si-60-10 and a Chrompack LiChrosorb 10-RP-18 column (25 cm). For the ¹H NMR analyses of the diastereomeric product mixtures the following shift reagents were used: $Pr(C_{14}H_{14}F_7O_2)_3$, tris[3-((heptafluoropropyl)hydroxymethylene)- α -camphorato]praseodymium(III) [Pr(hfc)₃]; Yb- $(C_{12}H_{14}F_3O_2)_3$, tris[3-((trifluoromethyl)hydroxymethylene)- α camphorato]ytterbium(III) [Yb(tfc)₃]; and Yb($C_{14}H_{14}F_7O_2$)₃, $tris[3-((heptafluropropyl)hydroxymethylene)-\alpha-camphorato]yt$ terbium(III) [Yb(hfc)₃].

(S)-(-)-1-Formyl-2-(methoxymethyl)pyrrolidine (4a). To a suspension of NaH (9.8 g, 0.40 mol) in THF (500 mL) was added (S)-(-)-1-formyl-2-(hydroxymethyl)pyrrolidine¹¹ (35.1 g, 0.27 mol) at room temperature under N₂. Under vigorous stirring MeI (61.5 g, 0.43 mol) dissolved in THF (45 mL) was gradually added. After refluxing for 1.5 h the suspension was poured into a saturated aqueous NaCl solution. The aqueous layer was extracted twice with CH₂Cl₂ (100 mL). After drying of the combined organic layers with MgSO₄ the solution was concentrated. The crude product 4a was purified by distillation under reduced pressure, bp 72-73 °C (0.6 torr) [lit.¹¹ 67 °C (0.26 torr)]; yield, 25.9 g (67.0%). The spectroscopic data were in agreement with those reported in the literature.¹¹

Similarly (S)-(-)-2-((benzyloxy)methyl)-1-formylpyrrolidine (4b) and (S)-(-)-2-(((2,4,6-trimethylbenzyl)oxy)methyl)-1-formylpyrrolidine (4c) were prepared. See the paragraph at the end of the paper about supplementary material, concerning characteristics for compounds 4b and 4c.

(S)-(-)-1-Formyl-2-(((triphenylmethyl)oxy)methyl)pyrrolidine (4d). To a solution of S-(-)-1-formyl-2-(hydroxymethyl)pyrrolidine 3 (12.0 g, 93 mmol) in dry pyridine (0.5 L) was added triphenylmethyl chloride (25 g, 93 mmol) at room temperature. After refluxing for 1.5 h the excess of pyridine was evaporated under reduced pressure. The residue was washed with diluted aqueous HCl. The crude product 4d was purified by chromatography (silica gel, ethyl acetate): yield, 30 g (86.9%); IR (NaCl) 1655 cm⁻¹ (C=O); ¹H NMR (CDCl₃) δ 1.37-2.10 (m, 4 H, -CH₂CH₂-), 2.90-4.00 (m, 5 H, -CH₂-N, -CH₂-O, H-C-N), 6.93-7.57 (m, 15 H, Ar), 8.13 and 8.37 (s, 1 H, HC=O); $[\alpha]^{20}_{D}$ -22.1 (c 1.00, CHCl₃); MS, m/e 371.1859 (M⁺); calcd for C₂₅H₂₅O₂N, 371.1885. (S)-(+)-2-(Methoxymethyl)pyrrolidine (5a). The procedure as given in the literature¹¹ was followed. When 4a (25 g, 0.18 mol) was used as starting material 14.2 g (68%) of 5a was obtained after distillation, bp 34-35 °C (32 torr) [lit.¹¹ 62 °C (40 torr)]. The spectroscopic data were in agreement with those reported in the literature.¹¹

Following the same procedure (S)-(-)-2-((Benzyloxy)methyl)pyrrolidine (5b) (S)-(+)-2-[((2,4,6-Trimethylbenzyl)oxy)methyl]pyrrolidine <math>(5c), and (S)-2-[(Triphenylmethoxy)methyl]pyrrolidine <math>(5d) were prepared. See the paragraph at the end of the paper about supplementary material concerning characteristics for compounds 5b-d.

(S)-(-)-1-((Chloromethyl)sulfonyl)-2-(methoxymethyl)pyrrolidine (6a). To a solution of 5a (7.0 g, 61 mmol) and triethylamine (8.6 g) in THF (125 mL) was added at 0 °C and under nitrogen chloromethanesulfonyl chloride (9.1 g, 61 mmol) dissolved in THF (10 mL). After stirring for 2 h at room temperature the reaction mixture was poured into a saturated aqueous NH₄Cl solution. The aqueous layer was extracted with CHCl₃ (50 mL). After drying with MgSO₄ the combined organic layers were concentrated and the residue was distilled under reduced pressure: bp 124-125 °C (0.8 torr); yield, 6.84 g (49.4%); IR (NaCl) 1160, 1345 cm⁻¹ (SO₂); ¹H NMR (CDCl₃) δ 1.58-2.27 (m, 4 H, -CH₂CH₂-), 3.13-3.82 (m, 4 H, -CH₂-N, -CH₂-O), 3.37 (s, 3 H, OCH₃), 4.00-4.33 (m, 1 H, H-C-N), 4.66 and 4.73 (AB q, 2 H, J = 12 Hz, CH₂Cl); $[\alpha]^{20}$ D -12.8 (c 1.10, CHCl₃); MS, m/e 182.0015 (M⁺ - CH₂OCH₃); calcd for C₅H₉O₂NSCl, 182.0043.

In the same manner 6b-k were prepared. See the paragraph at the end of the paper about supplementary material concerning characteristics for compounds 6b-k.

(S)-(-)-2-(Methoxymethyl)-1-((2-phenylethyl)sulfonyl)pyrrolidine (6l). To a solution of 6g (3.0 g, 15 mmol) in THF (60 mL) under N₂ was added 1.2 equiv of *n*-BuLi at -78 °C. After stirring for 1 h at room temperature benzyl bromide (4.3 g, 15 mmol) was added at -78 °C. The reaction mixture was stirred for 1 h at room temperature and subsequently poured into a saturated aqueous NH₄Cl solution. The aqueous layer was extracted with CH₂Cl₂ (50 mL) and the combined organic layers were dried with MgSO₄. After evaporation of the organic solvents and chromatography (silica gel, ether) of the residue 3.64 g (83%) of 6l was obtained: IR (NaCl) 1145, 1325 cm⁻¹ (SO₂); ¹H NMR (CDCl₃) δ 1.50-2.23 (m, 4 H, -CH₂CH₂), 2.65-3.78 (m, 8 H, -CH₂-O, -CH₂-N, SO₂CH₂, CH₂Ph), 3.35 (s, 3 H, OCH₃), 6.85-7.57 (m, 5 H, Ar); [α]²⁰_D -38.7 (c 0.95, CHCl₃); MS, *m/e* 238.0891 (M⁺ - CH₂OCH₃); calcd for C₁₂H₁₆O₂NS, 238.0902.

(S)-(-)-2-((Benzyloxy)methyl)-1-((2-phenylethyl)sulfonyl)pyrolidine (6m). The procedure as given for 6l was followed. When 6h (7.0 g, 26 mmol) was used as starting material 5.2 g (56%) of 6m was obtained after chromatography (silica gel, diisopropyl ether). Crystallization from diisopropyl ether gave the pure product: mp 53-54.5 °C; IR (KBr) 1150, 1345 cm⁻¹ (SO₂); ¹H NMR (CDCl₃) δ 1.71-2.16 (m, 4 H, -CH₂CH₂-), 2.91-3.73 (m, 8 H, -CH₂-N, -CH₂-O, SO₂CH₂, CH₂CH₂Ph), 3.87-4.22 (m, 1 H, H-C-N), 4.53 (s, 2 H, O-CH₂Ph), 6.98-7.44 (m, 10 H, Ar); [α]²⁰D -47.2 (c 1.09, CHCl₃); MS, *m*/e 238 (M⁺ - CH₂OCH₂Ph); calcd for C₂₀H₂₈NO₃S 359.488. Anal. Calcd: C, 66.82; H, 7.01; N, 3.90. Found: C, 66.66, 66.47; H, 6.99, 7.04; N, 3.91, 3.98.

1-[(Chloro(trimethylsilyl)methyl)sulfonyl]-2-(methoxymethyl)pyrrolidine (7a). To a solution of 6a (3.0 g, 13 mmol) in THF (60 mL) was added 1.2 equiv of n-BuLi at -78 °C under N₂. After stirring for 1.5 h at -78 °C Me₃SiCl (1.3 equiv, 25 mL) was added. At room temperature the reaction mixture was poured on a saturated aqueous NH₄Cl solution. The water layer was extracted once with CH₂Cl₂ (30 mL) and subsequently the combined organic layers were dried with MgSO₄. After concentration of the solution the residue was distilled under reduced pressure: bp 135 °C (0.3 torr); yield, 3.3 g (83%) of a mixture of diastereomers 7a; IR (NaCl) 1145, 1340 (SO₂), 850, 1250 cm⁻¹ (SiMe₃); ¹H NMR (CDCl₃) δ 0.30 (s, 9 H, SiMe₃), 1.70–2.23 (m, 4 H, -CH₂CH₂-), 3.20-3.93 (m, 4 H, -CH₂-N, -CH₂-O), 3.33 (s, 3 H, OCH₃), 3.93-4.37 (m, 1 H, H-C-N), 4.46 and 4.55 (s, 1 H, CHCl); MS, m/e 254.0410 (M⁺ – CH₂OCH₃); calcd for C₈H₁₇O₂NSSiCl, 254.0438.

2-((Benzyloxy)methyl)-1-[(α -(trimethylsilyl)benzyl)sulfonyl]pyrrolidine (7e). The procedure as given for 7a was followed. However, the anion of 6e was stirred for 1.5 h at room

⁽²⁰⁾ In the literature, however, the best asymmetric [4 + 2] cycloadditions are always performed with the aid of a Lewis acid catalyst.^{4,5} Unfortunately, sulfines show a limited stability in the presence of Lewis acid catalysts.

temperature before silvlation took place. When **6e** (5.0 g, 14 mmol) was used as starting material 5.2 g (89%) of **7e** was obtained: IR (NaCl) 1130, 1320 (SO₂), 850, 1250 cm⁻¹ (SiMe₃); ¹H NMR (CDCl₃) δ 0.23 (s, 9 H, SiMe₃), 1.08–2.07 (m, 4 H, -CH₂CH₂-). 2.64–4.01 (m, 5 H, -CH₂-N, -CH₂-O, H-C-N), 4.07 and 4.22 (s, 1 H, CHSiMe₃), 4.47 (s, 2 H, CH₂Ph), 7.31 (s, 10 H, Ar).

Compounds 7b-d,f,i,l,m were prepared as described for 7a. 7j,k were prepared as described for 7e. See the paragraph at the end of the paper about supplementary material concerning characteristics for compounds 7b-d,f,i,j-l,m.

(E)-[(2-(Methoxymethyl)pyrrolidinyl)sulfonyl]phenylsulfine (8d). To a solution of 7d (2.53 g, 7.43 mmol) in dry THF (50 mL) was added 1.2 equiv of n-BuLi at -78 °C under N₂. After stirring for 0.5 h at -78 °C the solution was added to a solution of an excess of SO₂ in THF (10 mL) at -78 °C. The reaction mixture was, after stirring overnight, poured into a saturated aqueous NH₄Cl solution. The aqueous layer was extracted with CH_2Cl_2 . The combined organic layers were dried with MgSO₄ and concentrated. After chromatography (silica gel, ether) sulfine 8d (1.0 g, 43%) was crystallized from ether: mp 98.5-99.5 °C; IR (KBr) 1150, 1350 (SO₂), 1050, 1125 cm⁻¹ (C=S=O); ¹H NMR (CDCl₃) δ 1.37-2.14 (m, 4 H, -CH₂CH₂-), 2.94-3.83 (m, 5 H-C-N, -CH₂O, -CH₂-N), 3.30 (s, 3 H, OCH₃), 7.33-7.88 (m, 5 H, Ar); MS, m/e 315 (M⁺). Anal. Calcd for C₁₃H₁₇S₂O₄N: C, 49.50; H, 5.43; N, 4.44. Found: C, 49.43, 49.41; H, 5.48, 5.46; N, 4.63, 4.63. Following the same procedure sulfines 8e,f were prepared. See

the paragraph at the end of the paper about supplementary material concerning characteristics for compounds 8e,f.

2-Chloro-3,6-dihydro-2-[(2-(methoxymethyl)pyrrolidinyl)sulfonyl]-4,5-dimethyl-2H-thiopyran 1-Oxide (9a). To a solution of 7a (1.45 g, 4.84 mmol) in dry THF (50 mL) was added 1.2 equiv of n-BuLi at -78 °C under N₂. After stirring for 1.5 h at -78 °C the reaction mixture was added to a solution of an excess of SO₂ in THF (5 mL). A large excess of 2,3-dimethyl-1,3-butadiene was added at -78 °C. After stirring overnight in the dark, the mixture was poured into a saturated aqueous solution of NH_4Cl . The aqueous layer was extracted with CH_2Cl_2 and the combined organic layers were concentrated after drying with MgSO₄. Chromatography (silica gel, diisopropyl ether) gave 9a (0.99 g, 57%) as a mixture of diastereomers: IR (NaCl) 1155, 1340 (SO₂), 1070 cm⁻¹ (S=O); ¹H NMR (CDCl₃) δ 1.73 (s, 6 H, $2 \times CH_3C = C$), 1.79-2.31 (m, 4 H, $2 \times CH_2$), 3.36 (s, 3 H, OCH₃), 4.19-4.57 (m, 1 H, H-C-N), 2.96-3.90 (m, 8 H, remaining protons); MS, m/e 355.0705 (M⁺); calcd for C₁₃H₂₂NS₂O₄Cl, 355.0680. Determination of the de by ¹H NMR, Yb(tfc)₃ (OCH₃), and HPLC, RP-8, 225 nm, 2.0 mL/min, water/methanol (60:40).

Similar sulfoxides 9b,c,i-m were prepared. See the paragraph at the end of the paper about supplementary material concerning characteristics for compounds 9b,c,i-m.

3,6-Dihydro-4,5-dimethyl-2-[(2-(methoxymethyl)pyrrolidinyl)sulfonyl]-2-phenyl-2H-thiopyran 1-Oxide (9d). To a solution of 8d (150 mg, 0.48 mmol) in CH₂Cl₂ (3 mL) was added an excess of 2,3-dimethyl-1,3-butadiene. After stirring for 1 week at room temperature in the dark cycloadduct 9d (170 mg, 90%) was obtained after chromatography (silica gel, ether) as a mixture of diastereomers: IR (NaCl) 1145, 1330 (SO₂), 1050 cm⁻¹ (S==O); ¹H NMR (CDCl₃) δ 1.33–2.23 (m, 4 H, $-CH_2CH_2-$), 1.54 and 1.78 (s, 6 H, 2 × CH₃) 3.21 and 3.30 (s, 3 H, OCH₃), 4.12–4.42 (m, 1 H, H–C–N), 7.32–7.57 (m, 3 H, Ar), 7.63–7.98 (m, 2 H, 2 × o-H), 2.72–3.93 (m, 8 H, remaining protons); MS, m/e 352 (M⁺ – CH₂OCH₃). The predominant diastereomer could be obtained separately by crystallization from methanol: mp 145–146.5 °C; IR (KBr) 1145, 1330 (SO₂), 1050 cm⁻¹ (S==O); ¹H NMR (CDCl₃) δ 1.54 and 1.78 (s, 6 H, 2 × CH₃), 1.45–2.00 (m, 4 H, $-CH_2CH_2-$), 3.21 (s, 3 H, OCH₃), 7.26–7.50 (m, 3 H, Ar), 7.63–7.93 (m, 2 H, 2 × o-H), 2.72–3.93 (m, 8 H, remaining protons).

Determination of de by ¹H NMR, Yb(tfc)₃ (OCH₃), and HPLC, Si-60, 254 nm, 2.0 ml/min, hexane/chloroform (60:40).

Following the same procedure sulfoxides 9e,f were prepared. See the paragraph at the end of the paper about supplementary material concerning characteristics for compounds 9e,f.

Acknowledgment. This investigation was supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO).

Registry No. 4a, 63126-45-4; 4b, 89597-94-4; 4c, 89597-95-5; 4d, 89597-96-6; 5a, 63126-47-6; 5b, 89597-97-7; 5c, 89597-98-8; 5d, 89597-99-9; 6a, 89598-00-5; 6b, 89598-01-6; 6c, 89598-02-7; 6d, 89598-03-8; 6e, 89598-04-9; 6f, 89598-05-0; 6g, 89598-06-1; 6h, 89598-48-1; 6i, 89598-07-2; 6j, 89598-08-3; 6k, 89598-09-4; 6l, 89598-10-7; 6m, 89598-11-8; 7a (isomer 1), 89598-12-9; 7a (isomer 2), 89598-13-0; 7b (isomer 1), 89598-14-1; 7b (isomer 2), 89598-15-2; 7c (isomer 1), 89598-16-3; 7c (isomer 2), 89598-17-4; 4d (isomer 1), 89598-18-5; 7d (isomer 2), 89598-19-6; 7e (isomer 1), 89598-20-9; 7e (isomer 2), 89598-21-0; 4f (isomer 1), 89598-22-1; 7f (isomer 2), 89598-23-2; 7i (isomer 1), 89598-24-3; 7i (isomer 2), 89598-25-4; 7j (isomer 1), 89598-26-5; 7j (isomer 2), 89598-27-6; 7k (isomer 1), 89598-28-7; 7k (isomer 2), 89598-29-8; 7l (isomer 1), 89598-30-1; 71 (isomer 2), 89598-31-2; 7m (isomer 1), 89598-32-3; 7m (isomer 2), 89598-33-4; 8d, 89598-34-5; 8e, 89598-35-6; 8f, 89598-36-7; 9a (isomer 1), 89598-37-8; 9a (isomer 2), 89673-96-1; 9b (isomer 1), 89598-38-9; 9b (isomer 2), 89673-97-2; 9c (isomer 1), 89598-39-0; 9c (isomer 2), 89673-98-3; 9d (isomer 1), 89598-40-3; 9d (isomer 2), 89673-99-4; 9e (isomer 1), 89598-41-4; 9e (isomer 2), 89674-00-0; 9f (isomer 1), 89598-42-5; 9f (isomer 2), 89674-01-1; 9i (isomer 1), 89598-43-6; 9i (isomer 2), 89674-02-2; 9j (isomer 1), 89598-44-7; 9j (isomer 2), 89674-03-3; 9k (isomer 1), 89598-45-8; 9k (isomer 2), 89674-04-4; 91 (isomer 1), 89598-46-9; 91 (isomer 2), 89674-05-5; 9m (isomer 1), 89598-47-0; 9m (isomer 2), 89674-06-6; MeI, 74-88-4; Me₃SiCl, 75-77-4; (S)-(-)-1-formyl-2-(hydroxymethyl)pyrrolidine, 55456-46-7; triphenylmethyl chloride, 76-83-5; chloromethanesulfonyl chloride, 3518-65-8; benzyl bromide, 100-39-0; 2,3-dimethyl-1,3-butadiene, 513-81-5; 2,4,6-trimethylbenzyl chloride, 1585-16-6; phenylmethanesulfonyl chloride, 1939-99-7; methanesulfonyl chloride, 124-63-0; ethanesulfonyl chloride, 594-44-5.

Supplementary Material Available: Characteristics of compounds 4–9 which are not described in the Experimental Section (10 pages). Ordering information is given on any current masthead page.